Showing posts from September, 2019

GANs and other deep learning models for cooking recipes

I retired this spring after working on artificial intelligence projects since the 1980s. Freedom from having to work on large projects for other people and companies is liberating and frees up time for thinking about new ideas. Currently I am most interested in deep learning models for generating and evaluating recipes - for now I am using a GAN model (which I am calling RecipeGAN). When I managed a deep learning team at Capital One, I used GANs to synthesize data. During a Saturday morning quiet-time hacking sprint the first month at my new job, I had the idea to take an example program SimpleGAN that generated MINST digits and instead generate numeric spreadsheet data (using the Wisconsin Cancer Data Set that I had previously used in my books as example machine learning data). I was really surprised how well this worked: I could generate fake Wisconsin cancer data, train a classification model on the fake data, and get classification prediction accuracy on real data samples that wa